
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9663 http://www.webology.org

Harnessing The Potential Of Opencl For Heterogeneous

Computing

PALYAM NATA SEKHAR 1 , DR. ARPANA BHARANI 2

1 Research Scholar, Department of Computer Science, Dr. A. P. J. Abdul Kalam University,

Indore, Madhya Pradesh.

2 Supervisor, Department of Computer Science, Dr. A. P. J. Abdul Kalam University, Indore,

Madhya Pradesh.

ABSTRACT

Parallel programming is essential in today's computing landscape, with the rise of heterogeneous

architectures and the demand for high-performance computing. OpenCL, as a versatile parallel

programming model, has gained prominence in enabling developers to harness the power of

heterogeneous computing systems. Through practical examples and optimization strategies, we

provide insights into crafting high-performance OpenCL applications. Real-world use cases

underscore OpenCL's effectiveness in harnessing heterogeneous computing environments. By

comparing OpenCL to other parallel models, we highlight its strengths and versatility. We

conclude by discussing challenges and future prospects, emphasizing OpenCL's pivotal role in

modern parallel programming.

Keywords: Parallel Programming, Heterogeneous, Performance, Vector, Memory.

I. INTRODUCTION

In general-purpose parallel programming on multiple kinds of processors, OpenCL is intended as

an open standard. OpenCL aims to make it easier for software developers to access heterogeneous

processing architectures by providing a uniform foundation. C is the programming language of

choice for the OpenCL standard, which provides a set of APIs. OpenCL principles rather than

technical specifics are all that is required for this thesis. The OpenCL standard contains all of the

framework's technical specifications.

Software platform OpenCL (Open Computing Language) aims to offer an interface for

programming computational devices such as GPUs, FPGA platforms and certain CPU models. All

devices that accept Khronos may execute software written in C99, an open specification

maintained by the Khronos Group. This enables parallel processing across a variety of platforms.

Developers working with GPGPU applications will find OpenCL particularly useful since it works

with all of the main GPU manufacturers and doesn't need learning a new programming language

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9664 http://www.webology.org

for every target device. OpenCL, on the other hand, enables one's programme to run on a wide

variety of platforms. As a result, OpenCL programmes can run on a wide range of computing

platforms.

First, its ability to operate on practically any major computing device and second, its ability to

provide utilities for an application to recognise what hardware is available and to modify task

allocation among devices to best use the available hardware enables it to achieve this goal. In the

next section (and the next chapter), we'll look at a specific application that is ideally suited to, and

in dire need of, the benefits of HC.

II. OPENCL APPLICATION FLOW

Figure 1 depicts the OpenCL application flow, with the stages numbered for reference in the

subsequent discussion. There are two distinct components to the flow. Runtime objects are created

by the platform layer and the kernel is executed in a context provided by the various platforms.

Figure 1 OpenCL Application Flow

Platform Layer

An OpenCL programme first checks to see whether any of the supported platforms are accessible

(step 1). A context is then created when the platform list has been retrieved (step 2), and the

required device type has been selected (step 3). There are three kinds of OpenCL devices that may

be used: CL DEVICE TYPE CPU, CL DEVICE TYPE GPU, and CL DEVICE TYPE

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9665 http://www.webology.org

ACCELERATOR. The accessible devices are then multiplied by the specified number in the

context (step 3). unless specifically liberated from context, the gadgets are made unique to the

context.

Runtime Layer

As part of the runtime layer, these duties are outlined in the following paragraphs. You don't have

to do the activities in the sequence outlined below.

Commands mentioned in this article are used to communicate between the host and the devices. A

command queue is built for each device specified in the context to send these instructions to the

devices (step 4). An OpenCL event object may be generated as an option whenever a command is

given.. These event objects enable the application to monitor the command's completion and may

be used to explicitly synchronise the process. To allocate space on the devices, memory objects

are generated (step 5). When these memory objects are generated, the application determines if the

host has permission to read or write to them.

Loading the source code or the binary implementation of one or more kernels creates the

programme objects (step 6). You may utilise either the device-specific executable (DSE), or the

current OpenCL implementation's intermediate representation (IR). Once the programme objects

have been produced, the device-specific executable may be generated from them. If an executable,

source code, or IR was used to construct the programme object, the OpenCL implementation

determines what action to take in the build stage of the programme object. With the OpenCL API,

a binary implementation may be saved to a file and utilised in subsequent executions of the

programme without having to recompile. The format of the output file is not part of the OpenCL

definition, and the implementation of OpenCL chooses a suitable format for the application. The

kernel object is formed from the executable after it has been compiled into the programme object.

The kernel object is a representation of one of the program's functions.

Memory copy instructions are sent against connected memory objects to move the input data to

device memory before the kernel is executed (step 7). The memory transfer might be non-blocking

or blocking, in which control is restored to the programme once the memory transfer is planned.

Events are used to synchronise non-blocking transfers. In step 8, the kernel parameters are

specified and the kernel is scheduled for execution via the command queue (as seen in Figure 1).

(step 9). Host memory is moved from the device to the host after the kernel has finished running

(step 10). The same kernel may be scheduled to run again in an iterative process. After the kernel

has run, fresh data may be sent to the device and new data can be sent back to the host. Once the

calculation is complete, all OpenCL objects are freed (step 11). OpenCL implementations may be

used in the same application with different implementations.

III. OPENCL PROGRAMMING MODEL

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9666 http://www.webology.org

If the host CPU and any linked OpenCL "devices" employ the same language, programming

interfaces, and hardware abstractions, then task- or data-parallel programs may run faster in a

heterogeneous computing environment. OpenCL interfaces presume host and device

heterogeneity, which is necessary since peripherals often do not share memory with the host CPU

and utilize a distinct machine instruction set. OpenCL provides APIs for a variety of tasks, such

as hardware discovery and management, memory allocation, data transfer between the host and

device, compiling OpenCL programs and "kernel" functions for execution on target devices,

launching kernels on target devices, querying execution progress and checking for errors, and

launching kernels.

OpenCL applications may use either offline or in-process compilation to generate binary objects.

The developer doesn't even need to have physical possession of the target device for their programs

to function normally there. Even though instruction sets, drivers, and supporting libraries may be

drastically altered between hardware generations, run-time compilation is unaffected.

Using OpenCL's run-time compilation capabilities ensures that your app always uses the most up-

to-date libraries and libraries for the target device, without requiring you to recompile your

program.

OpenCL is designed to work with a wide variety of microprocessor architectures, therefore it must

be compatible with many different programming styles. Although OpenCL ensures kernels are

portable and accurate across diverse hardware, it does not promise that any given kernel will run

at its absolute fastest on every architecture. Different platforms may benefit from different

programming techniques due to differences in the underlying hardware.

Creating a "context" for one or more devices is required before an application may do tasks such

as compiling OpenCL code, allocating memory, or launching kernels. Instead of being tied to a

certain hardware platform, memory allocations are context-aware. If devices with insufficient

memory are included in the context creation process, the total amount of memory allocated will

be capped at the capability of the least capable device. Similarly, if the devices that will be used

to execute the OpenCL applications in the new context do not support certain features, those

devices should be removed from the context.

OpenCL applications may be compiled dynamically by supplying the source code to OpenCL

compilation methods as arrays of strings once a context has been constructed. Handles for

individual "kernels" inside a built OpenCL application are then available. The OpenCL context

allows the "kernel" functions to be executed on devices. In order to run on a target device, OpenCL

hostdevice memory I/O operations and kernels must be enqueued into a command queue specific

to that device.

IV. OPENCL AND MODERN PROCESSOR ARCHITECTURES

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9667 http://www.webology.org

Existing programming languages do not adequately support, or even prevent the use of, some

characteristics of modern microprocessor architecture. Companies have developed their own

programming tools, language extensions, vector intrinsics, and subroutine libraries to compensate

for the general lack of programmability in the hardware business. To further demonstrate the

compatibility between the OpenCL programming paradigm and the wide range of available target

hardware, we conduct an in-depth comparison of the architecture of three example microprocessor

generations and draw connections between these features and core OpenCL abstractions and

capabilities.

Multi-core CPUs

High-frequency processor cores are the building blocks of today's central processing units (CPUs),

allowing for out-of-order execution and branch prediction. Central processing units (CPUs) are

very adaptable because of the variety of tasks they may do concurrently. A high cache is necessary

because the CPU cannot tolerate the latency of the main memory. For jobs that are time-sensitive

yet have little parallelism, CPUs need huge caches. To improve the performance of intensive

arithmetic and multimedia programs, many CPUs make limited use of single-instruction multiple-

data (SIMD) arithmetic units. Developers of legacy languages like C and Fortran may resort to

vectorized subroutine libraries, proprietary vector intrinsic functions, or rewrite source code and

make use of auto vectorizing compilers to make up for the lack of SIMD units. OpenCL has been

implemented by AMD, Apple, and IBM for multi-core CPUs and is compatible with SIMD

instruction set extensions like x86 SSE and Power/VMX. Float4 types must be used explicitly

during development for OpenCL kernels to take use of SSE on modern x86 processors. Many CPU

implementations use a single hardware cache for all memory spaces, which may make it more

expensive for a kernel to make extensive use of constant and local memory spaces than it would

be for a kernel to make exclusive use of global memory references.

The Cell Processor

The Cell Broadband Engine design (CBEA) is a heterogeneous chip architecture that consists of

many Synergistic Processor Elements (SPE), a Memory Interface Controller (MIC), and I/O units.

The PPE is Power-compliant and has 64 bits of memory. The PPE is an IBM Power architecture-

based general-purpose processor used to coordinate the work of SPEs by running standard

operating systems and control-intensive applications. The SPE is an integral part of Cell systems;

it is a SIMD streaming processor optimized for processing large amounts of data. Multiple SPEs

may be used to realize the task parallelism of an application, and SIMD instructions and dual

execution pipelines can be used to realize the data and instruction parallelism of SPEs. Each SPE

has its own dedicated cache-like fast memory (called local store) that is maintained by the CPU.

Transfer speeds are optimized when both the source and the destination are aligned to 128 bytes,

which is possible when applications employ DMA requests to transmit data between system

memory and local storage.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9668 http://www.webology.org

Application developers may mask memory latency with methods like double buffering since data

transmission and instruction execution can occur concurrently. The Cell processor's architecture

and an example application's porting to it have been described in depth in the work by Shi et al.

In order to facilitate the use of Linux on the Cell and Power CPUs, IBM has created an OpenCL

toolbox for Linux. IBM's OpenCL implementation incorporates software strategies to support the

embedded profile, which is necessary due to the Cell SPUs' architectural differences from regular

CPUs. Use global memory accesses with OpenCL float4 types or other operands that are multiples

of 16 bytes for best performance on the Cell processor. When working with larger vector types,

such as float16, performance may be further enhanced by using the compiler's unroll loops option.

The 256 kilobytes of on-board memory of a Cell SPU are used for storing both the source code

and "local" and "private" OpenCL variables. Since separate data storage is required for each

assignment, the possible size of workgroups is reduced. The Cell DMA engine's full potential may

be realized via the use of double buffering strategies in combination with asynchronous workgroup

copy() operations to load data from global memory into local storage.

Graphics Processing Units

Modern GPUs with hundreds of processing units were designed for throughput-oriented, latency-

insensitive applications. To hide the impact of global memory delay, GPUs include moderate-sized

on-chip caches, enabling thousands of threads to run in parallel over the whole GPU. Conventional

GPUs are organized as clusters of SIMD processing units managed by a central instruction decoder

and using a shared, high-speed on-chip cache.

The machine instructions are executed simultaneously by the SIMD clusters, which also deal with

branch divergence by keeping an eye on both forks of the branch and, if required, masking off the

outputs of the processing units that aren't actively doing anything. Because of its SIMD design and

in-order instruction execution, GPUs have more arithmetic units per square inch than CPUs do.

OpenCL has been implemented on both AMD and NVIDIA graphics processing units (GPUs). An

excessive amount of OpenGL work-items and work-groups are required for these gadgets to

completely overload the hardware and conceal latency. Due to the scalar processor nature of the

individual PEs, NVIDIA GPUs can efficiently handle most OpenCL data types. Float4 and other

four-element vector types provide the best performance for OpenCL applications on AMD

graphics processors because of their vector architecture. It is possible to optimize the resultant

vectorized OpenCL kernel code for excellent performance on x86 CPUs and on AMD and

NVIDIA GPUs, although the code is less legible than its scalar counterpart. Kernel optimality is

impacted by many features of the GPU's low-level architecture, such as the amount of cached

memory and the sorts of memory access that cause bank conflicts. The OpenCL documentation

provided by your chosen vendor will likely provide some suggestions for low-level optimization.

The following code snippets are meant to illustrate fundamental OpenCL programming concepts

rather than any specific implementations.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9669 http://www.webology.org

V. CONCLUSION

OpenCL stands as a robust and indispensable parallel programming paradigm, vital for tapping

into the full potential of modern hardware architectures. Its significance extends beyond theoretical

frameworks, as it empowers developers and researchers to address complex computational

challenges across diverse domains. As we look to the future, OpenCL remains a cornerstone,

supporting the ongoing evolution of parallel programming in an ever-changing technological

landscape.

REFERENCES: -

1. Gioiosa, Roberto & Mutlu, Burcu & Lee, Seyong & Vetter, Jeffrey & Picierro, Giulio &

Cesati, Marco. (2020). The Minos Computing Library: efficient parallel programming for

extremely heterogeneous systems. 1-10. 10.1145/3366428.3380770.

2. Fang, Jianbin & Huang, Chun & Tang, Tao & Wang, Zheng. (2020). Parallel Programming

Models for Heterogeneous Many-Cores : A Survey.

3. Fang, Jianbin & Huang, Chun & Tang, Tao & Wang, Zheng. (2020). Parallel Programming

Models for Heterogeneous Many-Cores: A Comprehensive Survey. CCF Transactions on

High Performance Computing. 2. 10.1007/s42514-020-00039-4.

4. Kaeli, David & Mistry, Perhaad & Schaa, Dana & Zhang, D.P.. (2015). Heterogeneous

Computing with OpenCL 2.0: Third Edition.

5. Gaster, Benedict & Howes, Lee & Kaeli, David & Mistry, Perhaad & Schaa, Dana. (2013).

Heterogeneous Computing with OpenCL. 10.1016/C2012-0-03322-4.

6. Nielsen, Allan & Engsig-Karup, Allan & Dammann, Bernd. (2012). Parallel Programming

using OpenCL on Modern Architectures.

7. Gaster, Benedict & Howes, Lee & Kaeli, David & Mistry, Perhaad & Schaa, Dana. (2012).

Heterogeneous Computing with OpenCL: Revised OpenCL 1.2 Edition.

8. Gaster, Benedict & Kaeli, David & Howes, Lee & Mistry, Perhaad. (2011). Heterogeneous

Computing With OpenCL. 10.1016/C2011-0-69669-3.

9. Xu, J. (2011). OpenCL – The Open Standard for Parallel Programming of Heterogeneous

Systems.

10. Barak, Amnon & Ben-Nun, Tal & Levy, Ely & Shiloh, Amnon. (2010). A package for

OpenCL based heterogeneous computing on clusters with many GPU devices. 1 - 7.

10.1109/CLUSTERWKSP.2010.5613086.

